Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on ℝ³

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic waves of a discrete higher order nonlinear Schrödinger equation ∗

The Hirota equation is a higher order extension of the nonlinear Schrödinger equation by incorporating third order dispersion and one form of self steepening effect. New periodic waves for the discrete Hirota equation are given in terms of elliptic functions. The continuum limit converges to the analogous result for the continuous Hirota equation, while the long wave limit of these discrete per...

متن کامل

Peak-height formula for higher-order breathers of the nonlinear Schrödinger equation on nonuniform backgrounds.

Given any background (or seed) solution of the nonlinear Schrödinger equation, the Darboux transformation can be used to generate higher-order breathers with much greater peak intensities. In this work, we use the Darboux transformation to prove, in a unified manner and without knowing the analytical form of the background solution, that the peak height of a high-order breather is just a sum of...

متن کامل

On the Cauchy problem for higher-order nonlinear dispersive equations

We study the higher-order nonlinear dispersive equation ∂tu+ ∂ 2j+1 x u = ∑ 0≤j1+j2≤2j aj1,j2∂ j1 x u∂ j2 x u, x, t ∈ R. where u is a real(or complex-) valued function. We show that the associated initial value problem is well posed in weighted Besov and Sobolev spaces for small initial data. We also prove ill-posedness results when a0,k 6= 0 for some k > j, in the sense that this equation cann...

متن کامل

Local Absorbing Boundary Conditions for a Finite Element Discretization of the Cubic Nonlinear Schrödinger Equation

We consider in this work the initial value problem for the one dimensional cubic nonlinear Schrödinger equation. In order to integrate it numerically, one option frequently used, is to impose local absorbing boundary conditions. A finite element discretization in space of the cubic nonlinear Schrödinger equation is considered along with the absorbing boundary conditions obtained for an analogou...

متن کامل

Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation

We consider the cubic fourth order nonlinear Schrödinger equation on the circle. In particular, we prove that the mean-zero Gaussian measures on Sobolev spaces [Formula: see text], [Formula: see text], are quasi-invariant under the flow.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society, Series B

سال: 2019

ISSN: 2330-0000

DOI: 10.1090/btran/29